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Abstract This study provides an overview of the epigenetic mechanisms in algae and the role of non-coding RNAs in gene
regulation. It offers an in-depth analysis of how these epigenetic mechanisms regulate the cell cycle, developmental stages,
photosynthesis, and metabolism in algae. The study also focuses on the epigenetic regulation of algae in response to environmental
stresses such as light, temperature, salinity, nutrient deficiency, and oxidative stress. Comparative studies reveal significant epigenetic
variations between freshwater and marine algae, as well as between microalgae and macroalgae, suggesting that these differences
may be closely related to their habitats. Case studies further confirm the potential of epigenetic regulation in enhancing stress
tolerance in algae and optimizing biofuel production, highlighting the broad prospects of epigenetic mechanisms in algal cultivation
and biotechnological applications. This research aims to promote sustainable algal farming practices and provide innovative solutions
to address global environmental challenges such as climate change and resource scarcity.

Keywords Epigenetic regulation in algae; Non-coding RNAs; Cell cycle regulation; Environmental stress; Sustainable algal

farming

1 Introduction

Epigenetics refers to heritable changes in gene expression that do not involve alterations in the DNA sequence
itself. These changes are mediated through various mechanisms, including DNA methylation, histone
modifications, chromatin remodeling, and non-coding RNAs. In eukaryotic cells, these epigenetic modifications
play a crucial role in regulating gene expression in response to developmental cues and environmental stresses.
DNA methylation, one of the most conserved epigenetic mechanisms, involves the addition of methyl groups to
DNA, typically at cytosine residues, which can lead to changes in gene expression. Histone modifications, such as
methylation, acetylation, and phosphorylation, alter the chromatin structure, thereby influencing gene accessibility
and transcriptional activity (Agarwal et al., 2020). These epigenetic changes are often reversible, allowing
organisms to adapt dynamically to changing environmental conditions (Wibowo et al., 2016).

Algae, as primary producers in aquatic ecosystems, play a vital role in global carbon cycling and are a potential
source of biofuels and other valuable bioproducts. Understanding the epigenetic regulation in algae is crucial for
several reasons. Firstly, it can provide insights into how algae respond to abiotic stresses such as changes in
temperature, salinity, and nutrient availability, which are critical for their survival and productivity. Secondly,
epigenetic modifications can influence the biosynthesis of metabolites, which are important for industrial
applications. Thirdly, studying epigenetic mechanisms in algae can contribute to our understanding of
evolutionary processes and the adaptation of these organisms to diverse and often extreme environments (Adhikar
and Curtis, 2016; Singroha and Sharma, 2019). Given the increasing interest in sustainable and renewable
resources, epigenetic research in algae holds significant promise for improving stress tolerance and enhancing
biomass production (Akhter et al., 2021; Ferrari et al., 2023).

This study will provide a comprehensive overview of the current understanding of epigenetic regulation in algae,
with a focus on its impact on growth, development, and stress responses. It will explore the effects of various
epigenetic mechanisms and environmental factors on epigenetic modifications, as well as how these changes
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promote adaptive responses to abiotic stress in algae. Additionally, the study will analyze recent advances in
epigenetic research techniques and their applications in algal biology to identify key areas for future research and
the potential biotechnological applications of epigenetic regulation in algae.

2 Mechanisms of Epigenetic Regulation in Algae

2.1 DNA methylation in algae

DNA methylation is a well-conserved epigenetic mechanism that plays a crucial role in regulating gene expression
in response to various environmental stimuli. In algae, DNA methylation involves the addition of a methyl group
to the cytosine residues in DNA, which can lead to gene silencing or activation depending on the context. This
modification is pivotal for the organism's response to abiotic stressors such as heavy metals, nutrient availability,
and temperature fluctuations. Stress conditions can induce changes in DNA methylation patterns, either through
hypo- or hyper-methylation at specific loci or across the genome, which can have adaptive significance and
influence genome evolution (Ferrari et al., 2023). The dynamic nature of DNA methylation allows algae to rapidly
adjust their gene expression profiles to cope with environmental challenges, thereby enhancing their stress
tolerance and overall fitness (Ji et al., 2023).

2.2 Histone modifications and chromatin remodeling

Histone modifications and chromatin remodeling are essential for the regulation of gene expression in algae.
These processes involve post-translational modifications of histone proteins, such as methylation, acetylation,
phosphorylation, and ubiquitination, which alter the chromatin structure and accessibility of DNA to
transcriptional machinery. In algae, histone modifications are crucial for the regulation of stress-responsive genes,
enabling the organism to adapt to changing environmental conditions. For instance, histone acetylation and
deacetylation play significant roles in modulating gene expression in response to abiotic stresses such as drought,
salinity, and extreme temperatures. Chromatin remodeling, facilitated by various chromatin-remodeling
complexes, further contributes to the dynamic regulation of gene expression by altering nucleosome positioning
and density, thereby influencing the accessibility of specific genomic regions to transcription factors and other
regulatory proteins (Liu et al., 2022).

2.3 Role of non-coding rnas in gene regulation

Non-coding RNAs (ncRNAs) are emerging as key regulators of gene expression in algae through their
involvement in epigenetic regulation. These ncRNAs, which include microRNAs (miRNAs), small interfering
RNAs (siRNAs), and long non-coding RNAs (IncRNAs), do not encode proteins but play critical roles in
regulating gene expression at the transcriptional and post-transcriptional levels. In algae, ncRNAs are involved in
various biological processes, including growth, development, and stress responses. They can modulate gene
expression by guiding chromatin-modifying complexes to specific genomic loci, thereby influencing DNA
methylation and histone modifications (Wei et al., 2017; Zhao et al., 2021). The interplay between ncRNAs and
other epigenetic mechanisms adds an additional layer of complexity to the regulation of gene expression, enabling
algae to fine-tune their responses to environmental changes and maintain cellular homeostasis (Chang et al.,
2019).

3 Epigenetic Influences on Algal Growth

3.1 Control of the cell cycle and growth regulation

Epigenetic factors such as DNA methylation and histone modifications are pivotal in regulating the cell cycle and
growth in algae. Reactive oxygen species (ROS) and reactive nitrogen species (RNS), including hydrogen
peroxide and nitric oxide, are significant in this context. These molecules act as signals that regulate the
expression of proteins essential for completing the cell cycle, such as cyclins and cyclin-dependent kinases. The
interaction of these signaling molecules with redox-sensitive transcription factors and various signaling pathways,
including MAPK and G-protein pathways, underscores their role in algal cell development and growth regulation
(Pokora et al., 2022). The modulation of DNA methylation patterns in response to environmental stressors can
lead to changes in gene expression that support growth under adverse conditions (Ferrari et al., 2023).
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3.2 Epigenetic modulation of algal developmental stages

Epigenetic modifications, including DNA methylation and histone modifications, provide an additional layer of
regulation that controls developmental processes in algae. These modifications can be established, maintained,
and removed to adapt to environmental changes and developmental cues (Figure 1). For instance, the reversible
nature of these modifications allows algae to respond rapidly to stress and developmental signals, thereby
influencing various stages of growth and development (Hewezi, 2017; Hemenway and Gehring, 2022). The
establishment of epigenetic memory, where certain epigenetic states are maintained within an individual but reset
between generations, also plays a role in the developmental plasticity of algae.
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Figure 1 Epigenetic memory on different timescales (Adopted from Hemenway and Gehring, 2022)

3.3 Impacts on photosynthesis and metabolism

Epigenetic regulation significantly impacts photosynthesis and metabolism in algae. For example, the green alga
Chromochloris zofingiensis can reversibly shut down photosynthesis and reprogram its metabolism in response to
glucose availability. This process involves rapid and reversible changes in the photosynthetic apparatus, thylakoid
ultrastructure, and energy stores, including lipids and starch. The addition of glucose leads to the repression of
photosynthetic pathways and the upregulation of heterotrophic carbon metabolism, highlighting the role of
epigenetic mechanisms in metabolic flexibility and adaptation (Roth et al., 2019). Histone modifications in
industrial microalgae like Nannochloropsis spp. have been shown to influence photosynthetic carbon fixation and
storage, underscoring the importance of epigenetic factors in optimizing algal metabolism for industrial
applications (Wei and Xu, 2018).

4 Epigenetic Regulation in Response to Environmental Stress

4.1 Stress responses to light, temperature, and salinity

Epigenetic mechanisms play a crucial role in how algae respond to various environmental stressors such as light,

temperature, and salinity. DNA methylation, a well-conserved epigenetic mark, is pivotal in regulating gene
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expression in response to these abiotic stresses. Changes in DNA methylation patterns, either hypo- or
hyper-methylation, can significantly impact the organism's ability to adapt to stressful conditions. For instance,
temperature stress can induce genome-wide DNA methylation changes, which are essential for the adaptive
response and can even direct genome evolution. Histone modifications and chromatin remodeling are also
involved in the stress response, providing a dynamic and reversible mechanism to regulate gene expression under
fluctuating environmental conditions (Hewezi, 2017; Chang et al., 2019).

4.2 Epigenetic mechanisms in nutrient starvation

Nutrient availability is a critical factor influencing the growth and development of algae. Under nutrient starvation,
epigenetic modifications such as DNA methylation and histone modifications play a significant role in regulating
gene expression to optimize resource utilization. These modifications can lead to the activation or repression of
genes involved in nutrient uptake and metabolism. For example, nutrient stress can trigger specific histone
modifications that alter chromatin accessibility, thereby modulating the expression of stress-responsive genes
(Thiebaut et al., 2019). Moreover, the interplay between nutrient availability and epigenetic regulation is crucial
for maintaining cellular homeostasis and ensuring survival under nutrient-limited conditions (Ferrari et al., 2023).

4.3 Role in oxidative stress and other environmental pressures

Oxidative stress, caused by an imbalance between reactive oxygen species (ROS) and antioxidant defenses, is
another significant environmental pressure that affects algae. Epigenetic alterations, including DNA methylation
and histone modifications, are critical in mediating the cellular response to oxidative stress. These modifications
can influence the expression of antioxidant genes and other stress-responsive pathways, thereby enhancing the
organism's ability to cope with oxidative damage. For instance, oxidative stress can lead to changes in histone
post-translational modifications, which in turn affect the histone code and gene expression patterns. The
interaction between oxidative stress and epigenetic regulation is essential for maintaining cellular homeostasis and
preventing pathogenesis (Garcia-Giménez et al., 2021; Huang et al., 2022; Rubio et al., 2023).

5 Comparative Epigenetics Across Algal Species

5.1 Differences in epigenetic patterns between freshwater and marine algae

Epigenetic mechanisms, particularly DNA methylation, play a crucial role in the adaptation of algae to their
respective environments. Freshwater and marine algae exhibit distinct epigenetic patterns that reflect their unique
environmental challenges. For instance, freshwater species often show domain-centric ontology enrichment for
nuclear and nuclear membrane functions, while marine species are enriched in organellar and cellular membrane
functions. Marine algae tend to have more viral families integrated into their genomes, which may contribute to
their adaptive strategies in saline environments (Nelson et al., 2020; Dong and Jin, 2024). These differences
highlight the role of epigenetic modifications in enabling algae to thrive in diverse habitats.

5.2 Epigenetic variations among microalgae and macroalgae

Microalgae and macroalgae also display significant epigenetic variations that influence their growth, development,
and stress responses. In microalgae, such as Dunaliella salina, epigenetic mechanisms like DNA methylation are
involved in the response to osmotic stress, although the extent of these changes can vary significantly between
strains (Leung et al., 2021). In contrast, macroalgae may exhibit different epigenetic responses due to their larger
and more complex structures. For example, the industrial microalga Nannochloropsis spp. shows specific histone
modifications that are crucial for photosynthetic carbon conversion and storage (Wei and Xu, 2018). These
variations underscore the diverse epigenetic landscapes across different types of algae.

5.3 Insights from model species vs. non-model algal species

Research on model algal species, such as Chlamydomonas reinhardtii, has provided valuable insights into the role
of epigenetic modifications in adaptation and stress responses. Experimental evolution studies have shown that
manipulating DNA methylation and histone acetylation can significantly impact the adaptation of
Chlamydomonas to various environmental stresses (Kronholm et al., 2017). However, non-model species also
offer important perspectives. For instance, the marine diatom Phaeodactylum tricornutum demonstrates how DNA
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methylation can act cooperatively with gene transcription to regulate key metabolic processes under high CO, and
warming conditions (Wan et al., 2023). These findings highlight the importance of studying both model and
non-model species to fully understand the epigenetic mechanisms underlying algal adaptation.

6 Technological Advances in Algal Epigenetics Research

6.1 High-throughput sequencing for epigenomic analysis

High-throughput sequencing technologies have revolutionized the field of epigenomics by enabling
comprehensive analysis of epigenetic modifications across the entire genome. These technologies, particularly
next-generation sequencing (NGS), allow for the identification and quantification of DNA methylation, histone
modifications, and chromatin accessibility at a genome-wide scale. The integration of NGS with bioinformatics
tools has facilitated the generation and interpretation of large-scale epigenomic datasets, providing insights into
the regulatory mechanisms underlying gene expression and cellular function (Han and He, 2016; Xu, 2024). This
approach has been instrumental in uncovering the complex interactions between epigenetic marks and their role in
health and disease, and it holds significant potential for advancing our understanding of algal biology and stress
responses.

6.2 CRISPR-Cas9 and epigenetic editing tools

The advent of CRISPR-Cas9 technology has provided a powerful tool for precise epigenome editing, enabling
targeted modifications of DNA methylation and histone marks. CRISPR-Cas9-based systems, such as
dCas9-KRAB and dCas9-p300, allow for the recruitment of epigenetic modifiers to specific genomic loci, thereby
modulating gene expression in a controlled manner (Goell and Hilton, 2021). These tools have been successfully
used to dissect the functional roles of epigenetic modifications in gene regulation and to explore their potential
applications in therapeutic contexts. In algae, CRISPR-Cas9-mediated epigenome editing could be employed to
investigate the epigenetic regulation of growth, development, and stress responses, offering new avenues for
enhancing algal productivity and resilience (Thakore et al., 2015; Qi et al., 2023).

6.3 Advances in bioinformatics and data integration

The rapid accumulation of epigenomic data necessitates advanced bioinformatics tools for data processing,
integration, and interpretation. Recent developments in computational epigenomics have focused on creating
robust algorithms and software platforms to analyze high-throughput sequencing data, identify epigenetic patterns,
and correlate them with phenotypic outcomes (Han and He, 2016). These tools enable researchers to integrate
epigenomic data with other omics datasets, such as transcriptomics and proteomics, providing a holistic view of
the regulatory networks governing cellular processes. In the context of algal research, bioinformatics
advancements are crucial for deciphering the complex epigenetic landscapes and their implications for algal
growth, development, and response to environmental stresses.

7 Case Study: Epigenetic Changes in Stress-Adapted Algae

7.1 Chlamydomonas reinhardtii as a model for epigenetic studies

Chlamydomonas reinhardtii has emerged as a pivotal model organism for studying epigenetic modifications due
to its genetic tractability and the wealth of available molecular tools. Research has demonstrated that C.
reinhardtii employs various epigenetic mechanisms to adapt to environmental stresses. For instance, under
osmotic stress, C. reinhardtii accumulates osmolytes and osmoprotective sugars, increases reactive oxygen species
(ROS) scavenging mechanisms, and alters cell physiology, which are likely regulated by epigenetic modifications
(Colina et al., 2020). Experimental evolution studies have shown that manipulating DNA methylation and histone
acetylation can significantly impact the adaptation of C. reinhardtii to different stress conditions, such as salt
stress, phosphate starvation, and high CO levels. These findings underscore the role of transgenerational
epigenetic effects in adaptive evolution (Kronholm et al., 2017).

7.2 Epigenetic adaptations in marine algal species under extreme conditions
Marine algal species, like their freshwater counterparts, exhibit remarkable epigenetic adaptations to survive under
extreme environmental conditions. For example, C. reinhardtii has been shown to adapt to high salinity by
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altering its transcriptome, which includes the upregulation of genes involved in maintaining lipid homeostasis and
enhancing glycolysis metabolism (Figure 2) (Wang et al., 2018). Similarly, exposure to UV-B radiation triggers
the downregulation of specific microRNAs, such as Cre-miR914, which in turn affects the expression of target
genes like ribosomal protein L18 (RPL18), enhancing the organism's tolerance to UV stress. These adaptations are
indicative of complex epigenetic regulation mechanisms that enable marine algae to thrive in harsh environments.

A 0 mM NaCl B 200 mM NaCl
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& e .
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e

Figure 2 The morphology of C. reinhardtii cells without addition of NaCl (A) and the morphology of C. reinhardtii cells under 200
mM NaCl treatment (B) (Adopted from Wang et al., 2018)

7.3 Practical applications in improving algal stress tolerance

Understanding the epigenetic mechanisms underlying stress responses in algae has significant practical
applications, particularly in the field of algal biotechnology. By targeting specific epigenetic pathways, it is
possible to engineer algal strains with enhanced stress tolerance. For instance, manipulating the expression of
genes involved in osmolyte accumulation and ROS scavenging could improve the resilience of algae to osmotic
stress, making them more suitable for industrial applications (Colina et al., 2020). The insights gained from
studying the epigenetic responses to UV radiation and salinity stress can be applied to develop algal strains that
are more robust in fluctuating environmental conditions, thereby increasing their productivity and sustainability in
biofuel production and other biotechnological processes (Wang et al., 2018; 2019).

8 Implications for Biotechnology and Algal Cultivation

8.1 Harnessing epigenetic mechanisms to enhance biomass production

Epigenetic mechanisms, such as DNA methylation, play a crucial role in regulating gene expression in response to
environmental stimuli. By understanding and manipulating these mechanisms, it is possible to enhance biomass
production in algae. For instance, DNA methylation patterns can be altered to improve stress tolerance, which in
turn can lead to higher biomass yields under suboptimal conditions. Integrating chromatin signature analysis with
transcriptomic data can identify key transcriptional regulators that control biomass production, providing targets
for genetic engineering to boost algal growth (Ngan et al., 2015). These strategies can be combined with advanced
cultivation techniques to maximize biomass output, making algal biofactories more efficient and economically
viable (Benedetti et al., 2018).

8.2 Optimizing algal biofuel production through epigenetic modulation

Epigenetic modulation offers a promising avenue for optimizing biofuel production in algae. By targeting specific
epigenetic marks, such as histone modifications and DNA methylation, it is possible to enhance lipid
accumulation without compromising cell growth. For example, the transcription factor PSR1 has been identified
as a key regulator of lipid biosynthesis in Chlamydomonas reinhardtii, and its manipulation can lead to increased
lipid production 6. Moreover, metabolic engineering strategies that incorporate epigenetic insights can streamline
the lipid biosynthesis pathways, thereby improving the overall efficiency of biofuel production (Xue et al., 2021).
These approaches can be further refined through the use of genetic algorithms and response surface methodologies
to optimize cultivation conditions, ensuring maximal lipid yield (Kumar et al., 2018).
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8.3 Potential for developing stress-resistant algal strains

Developing stress-resistant algal strains is essential for sustainable algal cultivation, especially in the face of
environmental challenges. Epigenetic mechanisms, such as DNA methylation, play a significant role in the
adaptive responses of algae to abiotic stressors like heavy metals, nutrient deficiencies, and temperature
fluctuations. By leveraging these mechanisms, it is possible to engineer algal strains that can withstand harsh
conditions while maintaining high productivity. Genetic engineering and co-cultivation with growth-promoting
bacteria can further enhance stress resistance and biomass yield (Zeraatkar et al., 2016; Berthold et al., 2019).
These advancements not only improve the resilience of algal cultures but also reduce the costs associated with
large-scale algal cultivation, making it a more viable option for biofuel and bioproduct production (Shurin et al.,
2016).
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